Motherboards

ASUS ROG Crosshair X870E Hero Motherboard Review

VRM Performance

When it comes to testing VRM performance, there are multiple ways to do it including using the likes of HWiNFO to measure what the sensor tells you, or to use K-Type probes, or to get a better, well-rounded picture, you can use both, which is exactly what we’ve done here today.

All of these motherboards were tested in the same room with the same probe configuration with the ambient temperature controlled at 23c for consistency in the results. First, the VRM temperature was taken at idle, with one probe on the upper VRMs and one probe to the side of the CPU A third reading was taken using the built-in sensor on the motherboard via HwiNFO.

We then leave the system sitting on the desktop for 10 minutes to settle before taking our idle readings on both HWiNFO and the probes. After this, we wanted to simulate a worst-case scenario using Prime95 with small FFTs to generate the most heat, as well as Cinebench 2024 to simulate more common, real-world usage. We run each test for an hour, along with letting the temperatures to settle down between each test.

You will find that the software reading from the sensor will vary quite wildly in areas, and this is down to the sensor location for one, and if the sensor is reporting the internal temperature instead, which based on our testing and the sensor data generally reading higher, that is the case.

When we look at our table, we can see that every board did exceptionally well with nothing hitting over 70 degrees Celsius, with our highest result coming from the X870-I Gaming WiFi Mini-ITX board at Degrees on the sensor temperature, while our highest probe temperature was 68.8 Degrees from probe 1 on the same board during our Prime95 hour long run but as it is such a small board, that’s pretty much expected.

Given that VRMs (Voltage Regulator Modules) behave similarly to CPUs and GPUs regarding heat generation and dissipation, it’s crucial to manage their temperatures effectively. Operating temperatures above 100°C can lead to long-term damage or failure. Typically, a safe operating range for VRMs is between 70°C and 90°C, but this could result in CPU performance throttling to reduce the temperatures to safer levels. however, it’s best to keep them below 70°C for optimal performance and longevity. All the boards tested here fall within these safe ranges, so that’s a big thumbs up for their thermal management.

Page: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Peter Donnell

As a child still in my 30's (but not for long), I spend my day combining my love of music and movies with a life-long passion for gaming, from arcade classics and retro consoles to the latest high-end PC and console games. So it's no wonder I write about tech and test the latest hardware while I enjoy my hobbies!

Disqus Comments Loading...

Recent Posts

PHILIPS Evnia 27M2C5501 180Hz QHD FreeSync Gaming Monitor Review

Philips is well known for its monitors, but its Evnia series stands as the jewel…

3 days ago

MSI Introduces New NVIDIA MGX Servers, Featuring Intel Xeon 6 and New Server Boards

Alongside AMD servers, MSI showcased its NVIDIA MGX AI servers and Intel Xeon 6 solutions…

3 days ago

Intel’s Next Generation of Accelerators Will Be Called Jaguar Shores

Intel has its Gaudi 2 accelerators available, and Gaudi 3 will be available soon. But…

3 days ago

Intel’s Latest Beta GPU Driver Comes With More Issues Than Improvements

Intel has just dropped a brand new update for its Arc GPU graphics drivers, but…

4 days ago

Epomaker Announces the Galaxy 100 Programmable Keyboard

The latest keyboard from Epomaker is here, with the Galaxy 100, a $110 fully customisable…

4 days ago

CORSAIR Launches iCUE LINK LX-R RGB Reverse Fans

Corsair has just announced the LX-R RGB Series, a new line of reverse-flow cooling fans…

4 days ago