A team of engineers from Stanford University in California have built a series of “MicroTugs”, tiny robots capable of dragging objects substantially heavier than they are, the strongest of which can pull up to 2,000 times its own weight, despite weighing only 12 grams.
The robots’ pulling power comes from their adhesive feet, inspired by those legendary reptilian climbers, geckos. The feet of the robots are covered in tiny rubber spikes that, when pressed against a surface, create a large surface area that allows the feet to stick. Another member of the animal kingdom inspired the movement of the robots, with the little mechanoids mimicking the scooching motion of the inchworm, with one foot holding while the other moves forward a small amount.
The Stanford team built a wide range of MicroTugs, the smallest of which weighs 20 milligrams, can pull loads of up to 500 milligrams, and had to be constructed under a microscope with tweezers. The 9 gram robots are able to tug objects as heavy as a kilogram, both horizontally and vertically.
The powerhouse iteration of the MicroTug is the μTug, a 12 gram robot capable of hauling loads of up to 24 kilograms, which is “the same as you pulling around a blue whale”, according to project engineer David Christensen.
The robots will have a public unveiling at the International Conference on Robotics and Automation in Seattle, Washington next month.
Thank you New Scientist for providing us with this information.
According to a new report, the GeForce RTX 5090 GPU will be very expensive. It…
A new AMD processor in the form of an engineering model has been leaked in…
SK Hynix has claimed to be the first company to mass-produce 321-layer NAND memory chips.…
SOUNDS GREAT – Full stereo sound (12W peak power) gives your setup a booming audio…
Special Edition Yoshi design Ergonomic controller shape with Nintendo Switch button layout Detachable 10ft (3m)…
Fluid Motion: These flight rudder pedals are smooth and accurate that enable precise control over…