While there had been some rumours that Nvidia would turn to Samsung’s 14nm process for GPUs, it appears those were wrong. For the longest time, Nvidia has relied on TSMC to manufacture their chips and it appears this relationship is continuing. Set to launch next year, Nvidia’s Pascal architecture will reportedly use TSMC’s latest 16nm process. This will be the same process used for AMD’s upcoming Greenland GPUs.
As with AMD’s Greenland, Pascal will be a new architecture with new features and other improvements. Most notably, Pascal will be paired with HBM2, allowing for up to 16GB of VRAM and 1TB/s of memory bandwidth. Other additions include support for NVLINK, Nvidia’s GPU interconnect and mixed precision support. With Kepler and later Maxwell, Nvidia had been stripping out compute power, leading to better power efficiency but at the cost of compute performance. Pascal is set to fix this and bring Nvidia’s compute power back on par with AMD’s, though likely at the cost of efficiency.
Even though Samsung lost out this time, the simple fact that they were in competition with TSMC speaks volumes. TSMC has been falling slightly behind in terms of process technology and trying to meet Apple’s insatiable demand. In some ways, using Samsung would have made sense as Samsung is also set to be a major HBM2 supplier as well, simplifying the production for Nvidia. In the end though, it seems that TSMC’s long experience with Nvidia and GPU’s won out.
Thank you BussinessKorea for providing us with this information
According to a new report, the GeForce RTX 5090 GPU will be very expensive. It…
A new AMD processor in the form of an engineering model has been leaked in…
SK Hynix has claimed to be the first company to mass-produce 321-layer NAND memory chips.…
SOUNDS GREAT – Full stereo sound (12W peak power) gives your setup a booming audio…
Special Edition Yoshi design Ergonomic controller shape with Nintendo Switch button layout Detachable 10ft (3m)…
Fluid Motion: These flight rudder pedals are smooth and accurate that enable precise control over…